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1. Introduction 

Neural network research to date has prioritized the development of accurate, 

reliable models. However, advances have often come at the expense of ever-

increasing network size and complexity,1,2 with the result that many state-of-the-art 

machine learning models today are effectively black boxes.3 Network simplicity is 

a critical consideration for developers and end users alike, for two reasons.  

The first reason is efficiency. Neural networks have many applications in areas 

where time and resources (e.g., computing power, memory, power) are strictly 

limited. A cell phone cannot perform the same number of floating point operations 

per second (FLOPS) as a supercomputer or even a desktop, and a self-driving car 

has to make life-or-death decisions in a fraction of a second. Clearly, a slow, 

computationally costly, complex model will fail to satisfy in such cases, no matter 

how accurate or reliable.  

The second reason is explainability. The more complex a model, the less likely a 

human can understand it. Which parts of the network are important, and which can 

be discarded? How could it be improved? Is this model a better fit for my problem, 

or is that one? Why did it make this decision? Can I trust it? These are questions 

that cannot be asked of a black box.  

Increasing awareness of these problems has begun to move the field, leading to a 

resurgence of interest in network simplification methods like pruning,4 the strategic 

removal of noncontributing network elements. Pruning, in combination with the 

appropriate data compression techniques, can dramatically reduce a network’s size 

without compromising performance.5  

However, only a fully-trained network can be pruned and compressed, so this 

method does nothing to expedite network training, which can be quite time-

consuming and computationally expensive. Moreover, it is not always trivial to 

determine ahead of time whether a given element’s contribution to the network is 

significant, and generally this determination is made on the basis of a somewhat 

arbitrary criterion.  

These types of network-downscaling operations are necessary because, in practice, 

networks are almost always extremely overparameterized.4,6 Overparameterization 

helps a neural network avoid becoming trapped in an unfavorable local minimum 

during training and failing to converge. The more weights a network has, the more 

weights are likely to be randomly initialized with values that favor convergence, 

and the more paths the gradient has available to approach the solution. As a result, 
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generally speaking, smaller networks require more epochs to converge than larger 

ones trained on the same data.6 

We present two new methods for training a dense network that offer considerable 

improvements in accuracy and rate of convergence while reducing the network size 

before training:  

 Inclusion of collapsible linear layers. The network is overpopulated with 

linear layers before training. A linear layer, which simply outputs linear 

combinations of the input, does not provide the network with increased 

capacity, since it can simply be folded into the weights of the subsequent 

layer. However, surprisingly, we find that it provides the same benefits as 

overparameterization (faster convergence and better accuracy) due to the 

increased number of parameters present during training. By collapsing the 

layers after training we remove these excess parameters automatically 

without reducing the amount of information contained in the network.  

 In-training partial weight reinitialization. Rather than initializing a large 

number of parameters once, at the beginning of training, and then pruning 

the noncontributing ones at the end, we periodically reinitialize 

noncontributing parameters during training. To keep the network stable, we 

freeze the retained parameters for several epochs. We find that reinitializing 

in this manner allows a smaller network to substantially outperform a larger 

one, even if the number of reinitialized weights is smaller than the 

difference between the two networks’ total parameter budgets. 

2. A Simple Problem: Image Painting with Shallow Networks 

We begin with a very simple dense network, shown in Fig. 1. It has two inputs, a 

single hidden layer containing three ReLU nodes, and an output layer containing 

one sigmoid node. Each (x, y) corresponds to a pixel in an image, and the network 

output is the value of that pixel.7,8  
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Fig. 1 A simple dense network with inputs x and y. Hidden ReLU nodes are represented in 

red and the output sigmoid node in green. 

We train the network to reproduce images such as those in Fig. 2a–d. The pixels in 

these images have values of either 0 (purple) or 1 (yellow), and are arranged in 

shapes with six or fewer vertices. Thus, they can be described by a linear 

combination of three half-planes, corresponding to the three ReLU nodes in our 

network, passed through a sigmoid function.  

 

Fig. 2 The family of shapes that can be expressed by the network shown in Fig. 1 using only 

three ReLU nodes (the minimal solution). Panels a–d show the images used to train the 

network. Panels e–h show the images predicted by the network, with decision boundaries 

corresponding to the ReLU nodes shown in red. 

A successfully trained network reproduces these simple images very accurately, as 

shown in Fig. 2e–h. The decision boundaries of the ReLU nodes are depicted in 

red. A breakdown of contributions from each node is shown for the case of the 

square in Fig. 3.  
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Fig. 3 The simplest possible solution to the square. Panels a–c show the outputs of the 

individual ReLU nodes, with the activation lines in red. Panel d shows the linear combination 

of the ReLU outputs that is fed into the output sigmoid node. Panel e shows the final result 

after the sigmoid, together with all three decision boundaries.  

Note that, while we are evaluating the network using the same collection of (x, y) 

it trained on, we are only trying to encode the images into the network, and are not 

trying to generalize. In other words, the network’s intended purpose is to memorize 

(overfit) the data.  

Three further points merit discussion. First, each of the solutions shown in Fig. 2 is 

the simplest possible solution corresponding to that image, but each image can also 

be described with 𝑛 > 3 ReLU nodes, or 𝑁 > 1 hidden ReLU layers. In general, 

neural networks rarely produce the simplest solution; more often, they result in 

haphazard combinations of partial and/or redundant solutions that produce the same 

final image, but are not so easily understood. Such networks also almost always 

end up containing a large number of dead or otherwise noncontributing nodes. 

Finally, a larger network requires more memory to store and more calculations to 

evaluate, important considerations in real, more complex problems.  

Second, training is not always successful. Depending on the random initialization 

of the weights before training, one or more of the ReLUs may be trapped in an 

unfavorable local minimum from which it cannot escape. This can either result in 

an unbounded shape (if there are fewer than three decision boundaries) or a 

bounded shape that is missing corners or otherwise distorted. These undesirable 

results are more common when fewer ReLU nodes are included in the network, 

since fewer nodes means fewer chances to get favorably initialized weights. The 

same limits can lead to excessively long training times for smaller networks. 
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Third, it is a rule of thumb that larger networks require more data to train than 

smaller ones.9 It is therefore possible that smaller networks might be more robust 

to small data sets, if their other problems could be solved. 

The problems discussed previously represent areas of active research as they also 

plague the more complex networks (e.g., deep convolutional networks) demanded 

by more complex problems. Networks train inefficiently if they are small, but 

express inefficient solutions if they are large, to say nothing of the resources large 

networks require.  

Despite their simplicity, study of these networks provides helpful understanding, in 

part because the “right” answer is trivially obvious. This is definitely not the case 

with, for example, a convolutional network used in image recognition. In the 

following sections we use these networks to demonstrate that our new methods, 

inclusion of collapsible linear layers and in-training partial weight reinitialization, 

can reproduce the benefits of overparameterization without actually increasing the 

number of parameters in the network.  

All of our work is done in Keras on top of a TensorFlow backend, but these methods 

could be implemented in any neural network programming environment.  

3. Virtual Overparameterization with Collapsible Linear Layers 

Linear layers have been used on several occasions to factorize weights in deep 

networks.10–12 The idea is that an 𝑚 × 𝑛 weight matrix can be expressed as the 

product of two matrices with dimensions 𝑚 × 𝑟 and 𝑟 × 𝑛. For small enough 𝑟, the 

second representation has fewer parameters than the first.  

We note that, in the context described previously, 𝑟 acts as a bottleneck, decreasing 

the amount of information contained in a very wide, shallow network with many 

redundant parameters. Our variation on the method allows the training process to 

target a smaller network from the beginning and does not remove any information 

from the system.  

3.1 Description of the Method 

The dense network shown in Fig. 1 can be equivalently expressed with a matrix 

equation: 

 (

𝑛11

𝑛12

𝑛13

) = relu [𝑨1 (
𝑥
𝑦) + 𝒃1], (1) 
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 𝑧 = sigmoid [𝑨2 (

𝑛11

𝑛12

𝑛13

) + 𝒃2], (2) 

where (𝑥, 𝑦) are the input coordinates, 𝑨1 and 𝑨2 are weight tensors, 𝒃1 and 𝒃2 are 

bias vectors, (𝑛11, 𝑛12, 𝑛13) are the outputs of the ReLU nodes in the hidden layer, 

and 𝑧 is the pixel value predicted by the network. Because of the nonlinear 

activation functions present in these layers, the weight tensors and bias vectors 

cannot be combined using the algebraic distributive property. However, this is not 

the case for a linear layer.  

Consider the networks shown in Fig. 4. Here, linear nodes are represented in gray. 

The matrix equation for the network shown in panel a is 

 (

𝑛11

𝑛12

𝑛13

) = relu [𝑨1 (
𝑥
𝑦) + 𝒃1], (3) 

 

(

 
 

𝑛21

𝑛22

𝑛23

⋮
𝑛29)

 
 

= 𝑨2 (

𝑛11

𝑛12

𝑛13

) + 𝒃2, (4) 

 𝑧 = sigmoid

[
 
 
 
 

𝑨3

(

 
 

𝑛21

𝑛22

𝑛23

⋮
𝑛29)

 
 

+ 𝒃3

]
 
 
 
 

. (5) 

However, in this case the distributive property allows us to fold Eq. 4 into Eq. 5: 

 𝑧 = sigmoid [𝑨2′ (

𝑛11

𝑛12

𝑛13

) + 𝒃2′], (6) 

where 𝑨2
′ = 𝑨3𝑨2 and 𝒃2

′ = 𝑨3𝒃2 + 𝒃3. This process can be performed for any 

number of linear layers, regardless of their size, meaning that a network with linear 

layers contains exactly the same information as an otherwise identical network 

where those layers have been folded into the weights of subsequent nonlinear 

layers. 

The key idea is that while these networks have identical capacity in principle, they 

do not have the same number of parameters. The model shown in Fig. 1 has 9 

parameters (weights + biases), while those shown in Figs. 4a and 4b have 55 and 
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49, respectively. Further, their structures are different, meaning that they update 

differently during training as the loss error is backpropagated through the network. 

 

Fig. 4 Two example networks equivalent to the one depicted in Fig. 1. ReLU nodes are 

represented in red, linear nodes in gray, and the output sigmoid node in green.  

3.2 Numerical Experiments 

We compare several different models and find that a simple network containing 

linear layers dramatically outperforms an equivalent network without linear layers. 

However, surprisingly, networks with linear layers also, in some respects, 

outperform a network without linear layers, but with more ReLU nodes, subject to 

the same parameter budget.  

We randomly initialize and train each model 30 times using the same protocol. Each 

iteration is given a practically unlimited number of epochs to train on (500,000), 

but we use Keras’s built-in early stopping callback (patience 20) to stop when the 

minimum loss (encountered so far) has not decreased for 20 consecutive epochs. 

The batch size is 128. The loss metric is mean squared error. Before training, 𝑥 and 

𝑦 are rescaled to lie between [−0.5,0.5] and shuffled.  

The model shown in Fig. 1 is denoted model 1 and the models shown in Figs. 4a 

and 4b model 2 and model 3, respectively. We also compare these to a larger 

shallow network with 12 ReLU nodes and no linear layers, denoted model 4.  
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Table 1 shows the results. ReLU nodes were considered “active” if their removal 

from the network, without changing any other weights, increased the loss by a 

factor of less than 1.5. In most cases, this corresponded to a node whose nonzero 

half-plane fell outside of the image area. Models 1–3 can only reproduce the square 

if all three nodes are active; model 4 has more options.  

Table 1 Effect of collapsible linear layers 

Model # parameters # active nodes 
# minimal correct 

solutions 

Loss (3 active 

nodes)a 

Run time(s) (3 

active nodes)a 

1 9 1.8 ± 0.81 6 (2.9 ± 0.1)  10–3 640 ± 80 

2 55 2.8 ± 0.5 26 (2.7 ± 1.3)  10–4 190 ± 40 

3 49 2.4 ± 0.7 15 (0.9 ± 1.8)  10–4 100 ± 30 

4 49 6.1 ± 1.3 1 2.9  10–3 651 

a Because only 1 of the 30 experiments with model 4 resulted in the minimal solution (3 active 

nodes), we cannot provide standard deviations for the loss and run time for this case. 

 

Our results show that, of models with only three ReLU nodes, the ones with linear 

layers (models 2 and 3) were much more likely to train successfully than model 1. 

Moreover, they took substantially less time to reach a solution, and the loss was a 

factor of 10 lower, corresponding to visibly sharper edges on the predicted square.  

Model 4 reproduced the square during all 30 trials, but only found the minimal 

solution one time. The other 29 trials resulted in overparameterized solutions with 

between 4 and 8 active nodes; detailed results from the trials of model 4 are shown 

in Table 2. 

Table 2 Results from model 4 trials 

# active nodes # occurrences Loss Run time(s) 

3 1 2.9 × 10−3 651 

4 3 (7 ± 9)  10–4 470 ± 110 

5 4 (1.4 ± 0.5)  10–3 550 ± 130 

6 11 (1.3 ± 0.2)  10–3 460 ± 50 

7 7 (6 ± 3)  10–4 460 ± 90 

8 4 (2.8 ± 1.2)  10–7 630 ± 30 
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Even though the number of parameters in model 4 is similar to those in models 2 

and 3, model 4 was considerably slower to converge and (except for the solutions 

with eight active nodes) did not produce a significantly lower loss. We note that 

evaluating each ReLU node’s loss to determine which nodes are active adds about 

2 s to the run time per node, adding up to 10–20 s increased run time for model 4 

relative to models 1–3. The rest of the time variation between models is due to 

models 1 and 4 requiring thousands more epochs to converge than models 2 and 3. 

Overall, this simple study implies that collapsible linear layers can reproduce at 

least some of the benefits seen in deeper networks without actually increasing the 

depth of the final network.  

4. In-Training Weight Reinitialization 

At the beginning of training, all weights and biases in the network are randomly 

initialized. During conventional training, this is only done once. However, later 

evaluation of the fully trained network shows that, typically, only a small fraction 

of the network contributes to the solution,4,6 and the rest can be deleted with little 

effect on the network.  

We find that, unsurprisingly, many noncontributing nodes are locked into a “bad” 

state early on in the training process. Rather than waiting until the end of training 

to prune these nodes, we give them a “fresh start” by reinitializing them during 

training. This produces higher-quality solutions at the cost of slightly increased 

training time and calculations required per attempt. To our knowledge, this type of 

training has not been performed before, although we are aware of one very recent 

paper that applied a similar concept to very sparse networks optimized for 

neuromorphic chips.13  

4.1 Description of the Method 

The procedure for training with reinitializations combines conventional training 

and pruning methods, outlined as follows and illustrated with a flowchart in Fig. 5:  

1) Randomly initialize the model’s weights and biases.  

2) Train the model until the loss reaches a relatively stable value using Keras’s 

built-in early stopping callback. In our experiments, we set patience to 20. 

3) Evaluate the model on the training set, taking the resultant loss as a baseline.  

4) Make a copy of the model. 
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5) Evaluate each ReLU node to determine whether it is contributing to the 

solution. We consider two categories of noncontributing nodes: low-loss 

nodes and trivially redundant nodes. 

a) Low-loss nodes. Nodes that can be deleted from the network 

without increasing its loss above a certain threshold, which we set 

at 1.5 times the baseline, are considered noncontributing. 

b) Trivially redundant nodes. Take the normalized dot product of the 

vectors formed by the weights (including bias) of each pair of nodes. 

We consider node pairs where this value is 0.99 or more to be 

trivially redundant, and consider larger groups of nodes trivially 

redundant as long as each node in the group is trivially redundant 

with at least one other. 

6) Freeze all contributing nodes so that they cannot be updated during training. 

We accomplish this by applying a mask to their incoming weights, biases, 

and outgoing weights that sets their gradient to zero during the 

backpropagation phase of each epoch. Because this functionality is not built 

into Keras, we had to add a new function to the Optimizers base class 

in optimizers.py. 

7) Reinitialize noncontributing nodes. These nodes are not frozen. 

8) Train the partially frozen network for a few epochs to force the newly 

randomized nodes to accommodate information already learned by the 

network (i.e., the weights and biases of the contributing nodes). In our 

experiments, we set patience for this subtraining to 10.  

9) Evaluate the model and compare the loss to the baseline. If the new loss is 

not comparable to or less than the baseline, revert the model to the copy 

made in step 4. We use 1.25 times the baseline as our loss threshold. This 

step is necessary because even with contributing nodes frozen, it is possible 

for the network to occasionally become trapped in a less favorable 

configuration than before reinitialization.  

10) If the model loss has not significantly worsened as a result of 

reinitialization, unfreeze all nodes (remove the gradient mask).  

11) Train the unfrozen network. We set patience to 20. 

12) Repeat steps 4–11 as many times as desired.  
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13) After the last reinitialization and subsequent training, prune any remaining 

noncontributing nodes from the network. We use the same criteria from 

step 5. 

14) Perform a final training of the network. We set patience to 20.  

The flowchart does not include steps unrelated to reinitialization, such as collapsing 

linear layers.  

 

Fig. 5 Flowchart illustrating the reinitialization process 

4.2 Numerical Experiments 

We test three different combinations of numbers of ReLU nodes and numbers of 

reinitializations: 30 ReLU nodes and 0 reinitializations, 15 nodes and 1 

reinitialization, and 10 nodes and 2 reinitializations. In each of these, the maximum 

number of weight initializations that can occur is 30, although because some 

weights are retained in the experiments with in-training reinitialization, in practice 

more weights are initialized in the first set of experiments than the others. We also 



 

Approved for public release; distribution is unlimited. 

12 

include three linear layers after each ReLU layer, each with the same size as the 

ReLU layer. 

For our test image, we use a six-pointed star, shown in Fig. 6 along with a minimal 

solution that only requires six active ReLU nodes. This solution might be 

considered the “right” answer, as it is both easy to understand and predicts the 

image perfectly. Even for this comparatively simple image, however, a minimal 

solution is difficult to achieve, requiring many reinitializations of a simple model 

with six ReLU nodes. A more complex solution, with more active ReLU nodes, 

might more reliably reproduce the star, but would be more difficult to understand.  

 

Fig. 6 A minimal solution for the star. Panels a–f show the outputs of the individual ReLU 

nodes, with activation lines in red. Panel g shows the linear combination of the ReLU outputs 

that is fed into the output sigmoid node. Panel h shows the final result after the sigmoid, 

together with all six decision boundaries. The inset in panel h shows the original image.  

Table 3 shows the results of 30 experiments with each model. We find that even 

though the set with 30 ReLU nodes and 0 reinitializations has the largest total 

number of weight initializations, it performs substantially the worst. 
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Table 3 Effect of in-training weight reinitialization 

# reinitializations / 

# nodes 
# sides # active nodes 

# sides per 

active node 
Loss Run time(s) 

0 / 30 7 ± 4 7 ± 4 0.8 ± 0.5 (8 ± 7)  10–2 90 ± 30 

1 / 15 11 ± 2 10 ± 2 1.1 ± 0.2 (2.3 ± 1.5)  10–2 115 ± 10 

2 / 10 10 ± 2 8 ± 1 1.3 ± 0.2 (2.7 ± 1.5)  10–2 114 ± 13 

 

First, it mostly produces output shapes that are dramatically different from the star, 

as measured in the “# sides” column, containing the average and standard deviation 

of the number of sides of the figure produced at the end of training. Examples of 

such images are shown in Fig. 7. As a result, this set also produces output with the 

largest loss.  

 

Fig. 7 Example images produced by failed networks with a) 6, b) 8, c) 10, and d) 11 sides 

In contrast, the sets with one and two reinitializations are more likely to produce 

the correct answer, or one that is at least close. This is borne out further in Fig. 8, 

which compares the number of images produced with a given number of sides 

across all three sets of experiments. Only the largest network, trained without any 

reinitializations, ever failed completely: in 7 out of 30 instances it produced a blank 

image (0 sides), and it reproduced the star only 3 times.  
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Fig. 8 Comparisons between networks trained with differing numbers of nodes and 

numbers of reinitializations: 30 ReLU nodes and 0 reinitializations (red), 15 and 1 (blue), and 

10 and 2 (green). Without reinitialization, even the largest network often fails to converge to 

any solution.  

Less obviously, the non-reinitialized network is also less efficient in the way it 

produces its results. The ratio of the number of sides in an output image to the 

number of active nodes required to produce that output gives an indicator of the 

nodes’ independence and expressive power. (A similar argument could be made 

about the product of the loss and the number of active nodes.) In the minimal answer 

depicted in Fig. 6, this ratio would be 2. Even with reinitializations, none of our 

experiments achieve that goal, but they are able to increase the ratio above 1, which 

is not the case for the non-reinitialized network.  

We finally note that all three sets of experiments have comparable runtimes; 

although reinitialization increases the time to train by about 25%, it decreases the 

average final loss by more than double that amount. At least for these experiments, 

the tradeoff is worth it.  

5. Conclusions and Further Work: Application to CNNs 

We have shown that including collapsible linear layers and reinitializing weights 

during training both significantly improve the outcome of training simple, fully 

connected neural networks. To the best of our knowledge, both of these methods 

are new. 
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As a result of our focus on a bottom-up approach to explainability, this work 

focuses on extremely simple, shallow networks, which limits the scope of our 

conclusions. However, these new methods can be straightforwardly extended to the 

more application-relevant problem of convolutional neural networks (CNNs):  

 Inclusion of collapsible linear layers. While a linear layer cannot be 

inserted directly between convolutional layers, the same effect can be 

achieved with a set of 1 × 1 × 𝑛 convolution kernels with linear activations, 

which can be collapsed in similar fashion to a linear fully connected layer.  

 In-training partial weight reinitialization. The procedure would not 

change except that kernels, not nodes, would be reinitialized.  

 Trivially redundant kernels. While the method for identifying trivially 

redundant nodes as described in section 4.1 does not generalize well to large 

fully connected networks due to the size of the weight vectors, we expect it 

to prove more useful in a CNN. Because convolution kernels are fairly small 

(3 × 3, 5 × 5, etc.) even in large networks, trivially redundant kernels can 

likely be identified by a simple dot product, rather than with a more 

complicated procedure (e.g., comparing their outputs).  

 Circularly permuted kernels. The output of a convolution kernel is 

approximately equal to the output produced by a second kernel whose rows 

and columns are circular permutations of those in the first kernel, provided 

the input is large compared to the kernel. This is frequently the case, at least 

in the shallower layers of the network. This implies that, under such 

circumstances, a kernel is also trivially redundant with all of its circular 

permutations.  

Considering the computational expense associated with training CNNs, any 

improvement due to these methods is likely to have a considerable impact. We are 

in the process of updating our code to apply to CNNs to test this assertion.  
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